

Helping Utilities Make Smart Solar Decisions

The Treatment of Solar in Utility Resource Planning

7 November 2013

- Recording & slides will be sent to all registered attendees and available on the Resource Library within 2 business days.
- Submit questions in the chat window at any time.
- Questions will be answered at the end of the webinar.

November 14th – <u>Special Webinar</u>

How to Get the Most out of Your SEPA Membership

November 21st – <u>Special Webinar</u>

Tools for Streamlining Interconnection

April 29th – 30th <u>Utility Solar Conference</u> in Newport Beach, California

Call for Speakers is Open! (deadline 5 Dec.)

Registration is Now Open! (early-bird ends 31 Dec.)

www.utilitysolarconference.com

Speakers

Karlynn Cory Senior Energy Analyst NREL

John Sterling Director, Utility Programs & Planning, SEPA **Mike Taylor** Director of Research SEPA *Moderator*

Who is SEPA?

SEPA Mission

...delivered through tailored education, publications, best practices, & consultation

Who is NREL?

NREL's Mission: Only National Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy

			t m		
	Energy Efficiency	Renewable Energy	Systems Integration	Market Focus	
	Residential	Solar	Grid	Private Industry	
	Buildings	Wind and Water	Infrastructure	Federal Agencies	
	Commercial Buildings	Biomass	Distributed Energy	Defense Dept.	
	Personal and	Hydrogen	Interconnection	State/Local Govt.	
	Commercial	Geothermal	Battery and	International	
	Vehicles		Thermal Storage		
			Transportation		
-	-		and the second		
					-

WHY ARE WE HERE?

- Understand utility solar supply planning methods, models and approaches
- Build awareness, capture challenges, and identify solutions for:
 - Approach to long-range resource planning
 - Methods and tools for conducting resource planning
 - How solar is considered in the resource planning process
- Method:
 - Interviews conducted with 13 entities, including 9 utilities
 - Questionnaire covering 28 utilities in 22 states
- Report issued on October 31, 2013
 - <u>http://www.nrel.gov/docs/fy14osti/60047.pdf</u>

UTILITY SUPPLY PLANNING CRASH COURSE

 Resource Planning balances supply-side and demand-side resources over a long-term window to meet anticipated future load requirements (plus reserves)

States with Integrated Resource Planning or Similar Processes

Load Growth

Load Duration Curve

Resource Considerations

- Existing Assets
 - Planned life
 - Repair or replace
- Contracts
 - End dates
 - Extension options
- EE/DR/DG
 - Customer adoption rates
- New Resources
 - Needs identification

States with RPS

States with Renewable Portfolio Standards

How Utilities Conduct Long-Term Planning Capacity Expansion Planning

Capacity Expansion Plans

- Creation of a series of future resource plans, often using software tools
- Utility takes an array of assumptions on their generation fleet, growth, fuel costs, etc
- Optimize future resource additions based on lowest potential revenue requirements

Potential Capacity Expansion Constraint Criteria

- Limiting the number of specific resources that can be added in a given window
- Setting a minimum level of capacity or energy from a specific resource type
- Restricting certain resources from being selected
- Requiring a specific resource to be built at a certain point in time
- Forcing a plant retirement prior to the end of its book life

Resource Characteristics

SEPA Capacity Expansion Modeling solar electric power association Example Results

- Production cost models take the set of future plans created in the Capacity Expansion process and runs them through an hourly dispatch model across the planning horizon (15+ years)
 - Can identify fuel mix, gas burn, emissions, and cost information
- Utilities often run sensitivity analytics around key variables, where future values are uncertain
- The goal here is to identify portfolios that are more robust against upward risk

Risk Analytics

What do utilities think about solar energy today?

Utility Perspectives on Solar

Benefits of Solar

- Meet renewable standard requirements
- Fuel diversification
- Cost stability
- Geographic dispersal benefits and incrementality
- Partial correlation to peak demand
- Environmental compliance risk mitigation
- Avoid line losses (DG only)

Challenges of Solar

- Integration and variable output
- Economics
- Lack of current capacity need
- Cross-subsidization
- Ramping issues
- Reduced capacity benefit over time with increasing penetration

CONSIDERATIONS FOR IMPROVED INTEGRATION OF SOLAR INTO RESOURCE PLANNING ANALYTICS

Where are there gaps between utility practices and solar incorporation?

- 1. Estimate solar capacity value
- 2. DG treatment in planning
- 3. Incorporate solar cost and performance
- Modify how solar is analyzed in existing planning tools

Solar Capacity Value

solar electric power association

Utility Treatment Today

Note: Numbers in circles represent the number of utility responses to the SEPA-NREL questionnaire.

Capacity Value Changes Based on Penetration

Impact of Increasing PV Penetration on System Peak

- Capacity Value is location-, technology-, and utility-specific
 - No "one size fits all" value that can be applied
 - Utilities should perform their own analysis for different technology types and locations
- Capacity Value is not static
 - The more solar that gets added to the system, the lower that incremental solar's Capacity Value will
 - be <u>unless storage is available</u>

- Virtually all utilities treat distributed PV as a net load reduction
 - Simple, and at low penetration levels an appropriate approach
- Utilities could consider treated DG as a resource
 - Could allow the utility to optimize the level of DG included in their resource plan
 - Can allow for sensitivity analytics around the solar price curve

Solar Costs

Opinions we have heard on where solar costs are going

Cost Declines Key Focus of DOE

Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020 (NREL/RMI Report, Aug 2013)

Solar Cost Data

Analysis Tools

- NREL's System Advisor Model advanced tool for estimating levelized cost of energy (LCOE) <u>http://sam.nrel.gov/</u>
- NREL's Cost of Renewable Energy Spreadsheet Tool simplified spreadsheet tool for estimating levelized cost of energy (LCOE) <u>https://financere.nrel.gov/finance/content/crest-costenergy-models</u>
- NREL's PVWatts tool for modeling production profiles of solar resources at different geographic locations <u>http://www.nrel.gov/rredc/pvwatts/about.html</u>

Modifying Planning Analytics

- Analyze solar on an aggregate and geographically disperse basis
- Enhanced risk/uncertainty analysis methods and/or updated modeling software
 - Ex: ability to run sub-hourly dispatch sensitivities
- Linking supply planning to other utility planning, procurement, and operations procedures
- Solar battery storage nexus

TAKE AWAYS

Project Learnings

- Significant sophistication in modeling resources exists at all utilities
- Utilities universally see solar as providing:
 - Stable-priced energy
 - Fuel diversification
 - Risk mitigation for natural gas price volatility and potential future carbon costs
- General agreement that the future cost curve for solar will continue to decline, but at a flatter rate than was experienced over the last several years
- Certain utilities are much further along in their inclusion of solar than others
 - Primary drivers: cost efficacy of utility-scale generation and robustness of customer-sited PV adoption

Areas of Focus for Solar Analytics

John Sterling jsterling@solarelectricpower.org

> Karlynn Cory Karlynn.cory@nrel.gov

Mike Taylor mtaylor@solarelectricpower.org

> Joyce McLaren Joyce.mclaren@nrel.gov

Helping Utilities Make Smart Solar Decisions

THANK YOU